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We investigate the statistics of eigenfunction intensifi¢ls|?) in dynamical systems with classical chaotic
diffusion. Our results contradict some recent theoretical considerations that challenge the applicability of field
theoretical predictions, derived in a different framework for diffusive disordered samples. For two-dimensional
systems, the tails gP(]|?) contradict the results of the optimal fluctuation method, but agree very well with
the predictions of the nonlinear model.
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The statistical properties of wave function intensities have In the present Rapid Communication, we numerically
sparked a great deal of research activity in recent yearstudy the distribution of intensities of the Floquet states of
These studies are not only relevant for mesoscopic physiase kicked rotor(KR) on a torug16] and its 2D generaliza-
[1-10, but also for understanding phenomena in areas ofion [17]. Our system is defined by the time-dependent
physics, ranging from nucleg@t1] and atomid 12] to micro-  Hamiltonian
wave physic$13] and opticd 14]. Experimentally, using mi-
crowave cavity techniques it is possible to probe the micro- d
scopic structure of electromagnetic wave amplitudes inpy—= — =S Ly 4.2
chagtic or disordered cavitie{sl.B]g.J Recently, the inFt)erest in : HO+kV§ a(t=mT),  Ho(i£i}) .21 2 (Lt )%
this problem was renewed when new effective field theoretic
techniques were developed for the study of the distribution V({6;})=cog 6;)cog 6,)cog @)
of eigenfunction intensities?(||?) of random Hamilto-
nians. As the disorder increases, these results predict that, the 1. .
eigenfunctions become increasingly nonuniform, leading to +58in(26)cod 26;)sin(a), @
an enhanced probability of finding anomalously large eigen-
function intensities in comparison with the random matrix
theory (RMT) prediction. Thus, the notion gbrelocalized . ) ) .
stateg r(1as bgepr)\ introdudgld-4] to explain thecfppearance of gate angle of one ro'_[or. The kick p_er|0d1|’$ Kis the .k'Ck'
long tails in the distributions of the conductance and otheid Strength, whiler; is a constant inversely proportional to
physical observabled]. the moment of inertia of the rotor. The standard KR corre-

Up to now all theoretical predictiofd—7] and numerical ~SPonds tod=1 (with 6,=0) whereas fod=2 we have a
calculationg9,10] apply to disordered systems and are basedWo-dimensional generalization. The parameterbreaks
on an ensemble averaging over disorder realizations. TheifRS [16], the parameters; are irrational numbers whose
validity, however, for a quanturdynamicalsystem(with a ~ Mmeaning will be explained below. The Hamiltonigh) de-
well defined classical limjtthat behaves diffusively is not Scribes a system that is kicked periodically in time and is
evident. Furthermore, based on an argument put forward iintegrable in the abse_znce of t_he kicking potentlal. The mot_|on
Ref. [6] (see also Ref15]), the far tail of P(|y{2) is due to ~ 9enerated by Eq(l) is classically chaotic and for a suffi-
rare realizations of the disorder potential, and therefore re¢iently strong kicking strengtkithere is diffusion in momen-
quires an exponentially large number of eigenfunctions!UM space with diffusion coefficienD=lim,_..(L(t))/t
which can only be accounted by disorder averaging. Heré~k/2T (within the random phase approximatjdi6,17.
instead we study the statistical properties of eigenfunctions If the £ are taken mod(2m;/T7;) wherem; are inte-
in a dynamicalmodel without introducing any ensemble av- 9€rs, Ed.(1) defines a dynamical system on a torus. The
eraging. Our main conclusion is that in a generic dynamicafiuantum mechanics of this system is described by a finite-
system with classical diffusiori(|#|2) is described quite dimensional time evolution operator for one period
well by the nonlinearr model (NLSM). We point out here
that between the various theoretical works there is a consid- U=exd —iHo({LiH) Tlexd —ivV({&})], 2
erable disagreement about the parameters that control the
shape ofP(| /%) and their dependence on time-reversal sym-where we puti=1. Upon quantization, additional symme-
metry (TRS). More specifically, the NLSM suggests that the tries associated with the discreteness of the momentum show
tail of P(|¢|?) in two dimensiong2D) is sensitive to TRS up, which can be destroyed by introducing irrational values
[4—6], while a direct optimal fluctuatiofOF) method pre- for the parameters;’s. The most striking consequence of
dicts a symmetry independent resliff. Recent numerical quantization is the suppression of classical diffusion in mo-
calculationg 9] on the Anderson model seem to support thementum space due to quantum dynamical localization
latter theory. This controversy was an additional motivation[16,17. We introduce the eigenstate componegn) of
for the present work. the Floquet operator in the momentum representation by

where £; denotes the angular momentum afjcthe conju-
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> UnaWi(n)=e "W, (n). (3)

The quantitieso, are known as quasienergies, and their den-
sity is p=T/2m. The corresponding mean quasienergy spac-£
ing is A=1/(pL%), whereL is the linear size of the system. <
The Heisenberg time isy=2m/A while t5=L?/D is the
diffusion time(Thouless timg Now one can formally define

a dimensionless conductance @sty, /tp=D,L% 2 where
D,=TD is the diffusion coefficient measured in the number

of kicks. Four length scales are important here: the wave- 015 | oK
length \, the mean free pathy, the linear extent of the R ®
systemL, and the localization lengtli. According to Refs. 0.10 | O
[2—7] the field theoretical predictions are derived under the 005 - S go °
conditions ’ “ ¢
O
N<ly<L<é (4) oon —F— od o8 o8
M . LD,

The first condition ensures that transport between scattering
events may be treated semiclassically. This limit can b‘iic
achieved for our systerfil) whenk—o, T—0 while the
classical param_ete't_sz rema.ms.conStam' thﬁ<L_ as  pest fit of Eqg.(5) for =1(2) to the nurerical data.(a Dy
ang as the _motlon IS not Iocahzg(de., L<é) ',t is diffusive, ~ 1800 and(b) D,~3150;(c) shows the extracted diffusion propa-
since a particle scatters many times before it can traverse ”b%tor x5 VS LID,.
system. The resulting mean free path for our systéjmis "
| = /Dy While the localization length fod=1 is £&=D,/2 i i )
[16] and ford=2 is £=I,,eP¥2[17,18. notlc.eable e}nd can be parametrized by a single parameter
Here we calculate the distribution functionpt  thatis the dimensionless conductarge D, /L. o
— LYW, (n)|?) [19] by using a direct diagonalization of the ~ FOrt<yD/L, according to all studief8—5] P(t) is just
Floguet operator(2). The TRS is broken entirely fo the RMT result Wltthanlynomml corrections in powers of
=5.749. In order to test the issue of dynamical correlations:/Pi, i-8., Pg(t) =P~ ()[1+ 6Pp(t)]. The leading term
we randomize the phases of the kinetic term of the evolutior®f this expansion is given by
operator(2) and calculate the resultirg(t). This model will
be referred to as random phase KRPKR). Since all our
eigenfunctions have the same statistical propeiieon-
trast to the Anderson cases where one should pick up only
eigenfunctions having eigenenergies within a small energy
interval [9,10]) we make use of all of them in our statistical
analysis. The classical parameteris large enough in all wherex~1/g is the 1D diffusion propagator, which is iden-
cases to exclude the existence of any stability islands imical for B=1 andB=2 since it is a classical quantity.
phase space. The classical diffusion coefficieptis calcu- In Figs. 1a) and Xb) we report our numerical results for
lated numerically by iterating the classical map obtainedsP,(t) for two representative values Bf,. One can clearly
from Eq. (1). Below we present our numerical results andsee that the agreement with the theoretical predidtiome-
compare them to the predictions of Ref8—7]. comes better aB, increases. This is due to the fact that by
1D kicked rotor It was shown in Ref[15] that the effec-  increasingD, we are approaching the semiclassical region
tive field theory describing the semiclassical physics of theand therefore Eqg4) are better satisfied. At the same time
system is precisely the NLSM for quasi-one-dimensionahigher order corrections i@P4(t) become negligible with
metallic wires. Such a mapping, however, requires an avelrespect to the leading term given by E§). The resultings;
aging over an ensemble of rotors having the same classicahd «, obtained by the best fit of our data to E@) are
limit. We point out again that in the calculations below we dofound to be equal and in agreement with thefsge Fig.
not adopt such an averaging procedure. 1(c)]. We therefore conclude that in a generic dynamical sys-
The NLSM for quasi-1D systems can be solved exactlytem, the only parameter that controls the shape of the devia-
for the distribution functionP4(t), using a transfer matrix  tions 5Py(t) is the classical diffusion propagator. Moreover,
approach3,5,6]. In the ballistic regiméwhereg—) RMT  our results are in excellent agreement with the recent NLSM
is applicable and one finCVQ(Rﬁ'\iTl)(t) =exp(-t/2)/\2wt and  predictions derived in the framework of diffusive disordered
P(RB'VLTZ)(t)=exp(—t) [20]. Here B denotes the corresponding systems. Finally in Fig. (£) we also report the outcome of
Dyson ensemblgB=1(2) for preservedbroken TRS|. As  the RPKR model. The results remain essentially the same
localization increases, the deviations from the RMT resultsndicating thatPg(t) for quasi-1D systems are insensitive to
of the body and the tails of the distributidP,(t) become dynamical correlations.

FIG. 1. Corrections to the distribution intensitié®(t) for the
ked rotator model, i.e., Eq1) for d=1. The system size ik
=1024, ©) B=1, (¢) B=2. The solid(dashed lines are the

3/4—3t/2+t%/4 for p=1

1—2t+1%/2 for p=2]’ ©

Wﬁ(t):K
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FIG. 2. (a) Tails of the distributiorfP,(t>D,/L) for the model /Dy

(1) for d=1 with L=1024D,=2625 and forg=1 (O) and g FIG. 3. Corrections to the distribution intensitié®(t) for the

=2 (©). The solid(dashedl lines are the best fit of EQ6) for  yjcked rotator model(1) for d=2. The system size is
B=1(2) t_o our data; (b) coeﬁlplentsCB vs YD, /L. The solid =90, (O) B=1, (¢) B=2. The solid (dashed lines are the
(dashedl lines are the best fits t&€;=AgDy/L+Bg for B pest fit of Eq.(5) for S=1(2) to the nurerical data.(a) D, ~34
=1(2). and(b) D~53; (c) fit parameters«, vs D;l. The solid(dashed

. o . lines are the best fits taﬁzABD;1+ B for B=1(2).
The tail of the distribution {*>D, /L) deviates strongly
from the RMT prediction and has a stretched exponentiap, a value that could be explained on the basis of ballistic

form [3-5] effects[6,9]. Taking the latter into account leads to an addi-
tional term in the classical propagatoms= kgjs
Pat)=agexp(—2Cat), Cz=B\DilL, ® 1 (B/2)kpay. The first term is the one discussed previously

i’:md is associated with long trajectories that are of diffusive
nature while the latter one is associated with short ballistic
trajectories that are self-tracing6]. Thus, when g+
<Kpa We getR=2. The calculation with the RPKR model
shows, however, that the corresponding ratioRis 1, in

wherea, is a symmetry dependent constant. Our numerica
results agree nicely with E@6). In Fig. 2a) we present an
example ofPg(t). By fitting our data to Eq(6) the coeffi-
cientsC,,C, can be extracted. In Fig.(®) we report the
extracted stretched exponential coefficie@isfrom the best

fit of Eq. (6) as a function of the square root of the dimen-
sionless conductanag=D, /L. A nice linear behavior is ob-
served. The best linear f@;=Az\Dy/L+ B yields Ag_
=0.41+0.05 andA;_,=0.82+0.05. The resulting rati®k
=A,/A;=2 is in excellent agreement with the theoretical
prediction (6). We have also calculated the stretched expo-
nential coefficientC; for the RPKR model. The results for
variousD, values are summarized in Fig(t? and show a

InP(t)

0 10

nice agreement with the results obtained from the real In’(t)
Hamiltonian. 20 ' Bt

2D kicked rotor According to Ref[3], corrections to the T oC, ®
body of PEMT are still given by Eq(5), but nowx is the 2D 15} ,///’/’Vp/,,/«’w &
diffusion propagator. e o

Figures 3a) and 3b) show corrections taPg"" for g 1wl
=D,>1 for two representative values bf,. We find again M
that the form of the deviations are very well described by Eq. 05 s .
(5) and the agreement becomes better for larger values of th 20 40 60 80
diffusion constant. In Fig. @) we summarize our results for Dk

variousDy values. The extractedy values are obtained by g, 4. () Tails of the distributior,._ 4(t>Dy) for the model
the best f_|t of the data to Ed5). Again we find thatx, (1) for d=2 and D,=35. The system size it =80, (O) B
depends linearly on I, . However, contrary to the 1ID-KR, _3 () g=2. The solid(dasheilines are the best fit of Eq7)
here k; and «,, are different. Moreover, the best fit with for g=1(2) to the nurerical datayb) fitted log-normal coefficients
kg=AgD *+B; yields Ag_;=544+0.03 and Az, C versus the classical diffusion coefficiedy . The solid(dashed
=10.84+0.04 indicating that the rati®B=A;/A; is close to lines are the best fits t6 ;= AzD+ B for =1(2).
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agreement with the theoretical prediction for disordered sysauthors were not able to go to large enough values of con-
tems with a pure diffusion. This indicates that dynamicalductanceg (in comparison to our studyvhere the theory can

correlations can be important in the 2D case. really be tested. In contrast, the NLSM predicts a value of 2
For the tails of the distributions, the result of the NLSM for the ratioR=C3/C7 . We note thaCy is only the leading
within a saddle-point approximatidd,6] is term inDy. In order to calculate this ratio, we performed a

B2 D fit to our data withC;=AzD+ B . The resulting ratio was
Pﬁ(t):exq—cg(lnt)z], Cy= p ) fo_und to beR=A2/A_1=. 1.97i(_).03, in pe_rfect agreement
2 In(L/1) with the NLSM predictions. Finally, in Fig. %) we also

. ) ) present our results for the RPKR modesing the same data
Note that the decay in the tails of E) depends o8, asin 55 the one in Fig. @)]. Again we found that the rati®

the 1D-KR casdsee Eq(6)]. Recently, a DOF method was _ 1 gg+0.03~2. Thus P(t>D,) depends on TRS and is
used to calculate the tails @f5(t) [7]. It was found that the described by the NLSM.

tails are still given by Eq(7) but with a log-normal coeffi-

i N In summary, we have performed a detailed numerical
cient C that is independent of the paramefgr

analysis of the statistical properties of the wave function in-
D tensitiesP(t) of the standard KR on a torus and its 2D gen-
p . (8 eralization. Based on these results, we concluded that the
In(L/M) distribution P(t) of generic quantumdynamical systems
Figure 4a) shows a representative caseQf—;(t>Dy).  with diffusive classical limit is affected by the existence of
The tails show a log-normal behavior predicted by &.In  prelocalizedstates. The deviations from RMT are well de-
Fig. 4(b) we report the log-normal coefficien@; extracted  scribed by field theoretical methods developed for disordered
from the best fit to our numerical data, versus the classicadystems. In particular, in a clarifying way we have resolved
diffusion coefficient. A pronounced linear behavior is ob-the controversy between DOF and NLSM by demonstrating

served in agreement with both theories. However, one clearlyhat the dependence of the tails/f(t) on TRS is described
sees thaC, differs from C, in contrast to the DOF predic- correctly by the latter theoretical approach.

tion (8) and to recent numerical calculations done for the 2D
Anderson mode[9]. We point out here that in Ref9] the We acknowledge useful discussions with L. Kaplan.
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