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Signatures of prelocalized states in classically chaotic systems
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We investigate the statistics of eigenfunction intensitiesP(ucu2) in dynamical systems with classical chaotic
diffusion. Our results contradict some recent theoretical considerations that challenge the applicability of field
theoretical predictions, derived in a different framework for diffusive disordered samples. For two-dimensional
systems, the tails ofP(ucu2) contradict the results of the optimal fluctuation method, but agree very well with
the predictions of the nonlinears model.
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The statistical properties of wave function intensities ha
sparked a great deal of research activity in recent ye
These studies are not only relevant for mesoscopic phy
@1–10#, but also for understanding phenomena in areas
physics, ranging from nuclear@11# and atomic@12# to micro-
wave physics@13# and optics@14#. Experimentally, using mi-
crowave cavity techniques it is possible to probe the mic
scopic structure of electromagnetic wave amplitudes
chaotic or disordered cavities@13#. Recently, the interest in
this problem was renewed when new effective field theor
techniques were developed for the study of the distribut
of eigenfunction intensitiesP(ucu2) of random Hamilto-
nians. As the disorder increases, these results predict tha
eigenfunctions become increasingly nonuniform, leading
an enhanced probability of finding anomalously large eig
function intensities in comparison with the random mat
theory ~RMT! prediction. Thus, the notion ofprelocalized
states has been introduced@1–4# to explain the appearance o
long tails in the distributions of the conductance and ot
physical observables@1#.

Up to now all theoretical predictions@1–7# and numerical
calculations@9,10# apply to disordered systems and are ba
on an ensemble averaging over disorder realizations. T
validity, however, for a quantumdynamicalsystem~with a
well defined classical limit! that behaves diffusively is no
evident. Furthermore, based on an argument put forwar
Ref. @6# ~see also Ref.@15#!, the far tail ofP(ucu2) is due to
rare realizations of the disorder potential, and therefore
quires an exponentially large number of eigenfunctio
which can only be accounted by disorder averaging. H
instead we study the statistical properties of eigenfuncti
in a dynamicalmodel without introducing any ensemble a
eraging. Our main conclusion is that in a generic dynam
system with classical diffusion,P(ucu2) is described quite
well by the nonlinears model ~NLSM!. We point out here
that between the various theoretical works there is a con
erable disagreement about the parameters that contro
shape ofP(ucu2) and their dependence on time-reversal sy
metry ~TRS!. More specifically, the NLSM suggests that th
tail of P(ucu2) in two dimensions~2D! is sensitive to TRS
@4–6#, while a direct optimal fluctuation~DOF! method pre-
dicts a symmetry independent result@7#. Recent numerica
calculations@9# on the Anderson model seem to support t
latter theory. This controversy was an additional motivat
for the present work.
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In the present Rapid Communication, we numerica
study the distribution of intensities of the Floquet states
the kicked rotor~KR! on a torus@16# and its 2D generaliza-
tion @17#. Our system is defined by the time-depende
Hamiltonian

H5H01kV(
m

d~ t2mT!, H0~$Li%!5(
i 51

d
t i

2
~Li1g i !

2,

V~$u i%!5cos~u1!cos~u2!cos~a!

1
1

2
sin~2u1!cos~2u2!sin~a!, ~1!

whereLi denotes the angular momentum andu i the conju-
gate angle of one rotor. The kick period isT, k is the kick-
ing strength, whilet i is a constant inversely proportional t
the moment of inertia of the rotor. The standard KR cor
sponds tod51 ~with u250) whereas ford52 we have a
two-dimensional generalization. The parametera breaks
TRS @16#, the parametersg i are irrational numbers whos
meaning will be explained below. The Hamiltonian~1! de-
scribes a system that is kicked periodically in time and
integrable in the absence of the kicking potential. The mot
generated by Eq.~1! is classically chaotic and for a suffi
ciently strong kicking strengthk there is diffusion in momen-
tum space with diffusion coefficientD[ limt→`^L 2(t)&/t
.k2/2T ~within the random phase approximation! @16,17#.

If the Li are taken mod(2pmi /Tt i) wheremi are inte-
gers, Eq.~1! defines a dynamical system on a torus. T
quantum mechanics of this system is described by a fin
dimensional time evolution operator for one period

U5exp@2 iH 0~$Li%!T#exp@2 iV~$u i%!#, ~2!

where we put\51. Upon quantization, additional symme
tries associated with the discreteness of the momentum s
up, which can be destroyed by introducing irrational valu
for the parametersg i ’s. The most striking consequence o
quantization is the suppression of classical diffusion in m
mentum space due to quantum dynamical localizat
@16,17#. We introduce the eigenstate componentsCk(n) of
the Floquet operator in the momentum representation by
©2002 The American Physical Society09-1
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(
m

UmnCk~n!5eivkTCk~n!. ~3!

The quantitiesvk are known as quasienergies, and their d
sity is r5T/2p. The corresponding mean quasienergy sp
ing is D51/(rLd), whereL is the linear size of the system
The Heisenberg time istH52p/D while tD5L2/D is the
diffusion time~Thouless time!. Now one can formally define
a dimensionless conductance asg5tH /tD5DkL

d22 where
Dk5TD is the diffusion coefficient measured in the numb
of kicks. Four length scales are important here: the wa
length l, the mean free pathl M , the linear extent of the
systemL, and the localization lengthj. According to Refs.
@2–7# the field theoretical predictions are derived under
conditions

l! l M!L!j. ~4!

The first condition ensures that transport between scatte
events may be treated semiclassically. This limit can
achieved for our system~1! when k→`, T→0 while the
classical parameterK5kT remains constant. Whenl M!L as
long as the motion is not localized~i.e., L!j) it is diffusive,
since a particle scatters many times before it can traverse
system. The resulting mean free path for our system~1! is
l M.ADk while the localization length ford51 is j.Dk/2
@16# and ford52 is j. l MeDk/2 @17,18#.

Here we calculate the distribution functionP„t
5LduCk(n)u2

… @19# by using a direct diagonalization of th
Floquet operator~2!. The TRS is broken entirely fora
55.749. In order to test the issue of dynamical correlatio
we randomize the phases of the kinetic term of the evolu
operator~2! and calculate the resultingP(t). This model will
be referred to as random phase KR~RPKR!. Since all our
eigenfunctions have the same statistical properties~in con-
trast to the Anderson cases where one should pick up
eigenfunctions having eigenenergies within a small ene
interval @9,10#! we make use of all of them in our statistic
analysis. The classical parameterK is large enough in all
cases to exclude the existence of any stability islands
phase space. The classical diffusion coefficientDk is calcu-
lated numerically by iterating the classical map obtain
from Eq. ~1!. Below we present our numerical results a
compare them to the predictions of Refs.@2–7#.

1D kicked rotor. It was shown in Ref.@15# that the effec-
tive field theory describing the semiclassical physics of
system is precisely the NLSM for quasi-one-dimensio
metallic wires. Such a mapping, however, requires an a
aging over an ensemble of rotors having the same clas
limit. We point out again that in the calculations below we
not adopt such an averaging procedure.

The NLSM for quasi-1D systems can be solved exac
for the distribution functionPb(t), using a transfer matrix
approach@3,5,6#. In the ballistic regime~whereg→`) RMT
is applicable and one findsP(b51)

RMT (t)5exp(2t/2)/A2pt and
P(b52)

RMT (t)5exp(2t) @20#. Hereb denotes the correspondin
Dyson ensemble@b51(2) for preserved~broken! TRS#. As
localization increases, the deviations from the RMT resu
of the body and the tails of the distributionPb(t) become
05520
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noticeable and can be parametrized by a single param
that is the dimensionless conductanceg5Dk /L.

For t,ADk /L, according to all studies@3–5# P(t) is just
the RMT result with polynomial corrections in powers
L/Dk , i.e., Pb(t)5P b

RMT(t)@11dPb(t)#. The leading term
of this expansion is given by

dPb~ t !.kH 3/423t/21t2/4 for b51

122t1t2/2 for b52J , ~5!

wherek;1/g is the 1D diffusion propagator, which is iden
tical for b51 andb52 since it is a classical quantity.

In Figs. 1~a! and 1~b! we report our numerical results fo
dPb(t) for two representative values ofDk . One can clearly
see that the agreement with the theoretical prediction~5! be-
comes better asDk increases. This is due to the fact that b
increasingDk we are approaching the semiclassical reg
and therefore Eqs.~4! are better satisfied. At the same tim
higher order corrections indPb(t) become negligible with
respect to the leading term given by Eq.~5!. The resultingk1
and k2 obtained by the best fit of our data to Eq.~5! are
found to be equal and in agreement with theory@see Fig.
1~c!#. We therefore conclude that in a generic dynamical s
tem, the only parameter that controls the shape of the de
tions dPb(t) is the classical diffusion propagator. Moreove
our results are in excellent agreement with the recent NL
predictions derived in the framework of diffusive disorder
systems. Finally in Fig. 1~c! we also report the outcome o
the RPKR model. The results remain essentially the sa
indicating thatPb(t) for quasi-1D systems are insensitive
dynamical correlations.

FIG. 1. Corrections to the distribution intensitiesdPb(t) for the
kicked rotator model, i.e., Eq.~1! for d51. The system size isL
51024, (s) b51, (L) b52. The solid~dashed! lines are the
best fit of Eq. ~5! for b51(2) to the numerical data.~a! Dk

'1800 and~b! Dk'3150;~c! shows the extracted diffusion propa
gatorkb vs L/Dk .
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The tail of the distribution (t.Dk /L) deviates strongly
from the RMT prediction and has a stretched exponen
form @3–5#

Pb~ t !.ab exp~22CbAt !, Cb5bADk /L, ~6!

whereab is a symmetry dependent constant. Our numer
results agree nicely with Eq.~6!. In Fig. 2~a! we present an
example ofPb(t). By fitting our data to Eq.~6! the coeffi-
cients C1 ,C2 can be extracted. In Fig. 2~b! we report the
extracted stretched exponential coefficientsCb from the best
fit of Eq. ~6! as a function of the square root of the dime
sionless conductanceg5Dk /L. A nice linear behavior is ob-
served. The best linear fitCb5AbADk /L1Bb yields Ab51
50.4160.05 andAb5250.8260.05. The resulting ratioR
5A2 /A152 is in excellent agreement with the theoretic
prediction ~6!. We have also calculated the stretched ex
nential coefficientsCb for the RPKR model. The results fo
variousDk values are summarized in Fig. 2~b! and show a
nice agreement with the results obtained from the r
Hamiltonian.

2D kicked rotor. According to Ref.@3#, corrections to the
body ofP b

RMT are still given by Eq.~5!, but nowk is the 2D
diffusion propagator.

Figures 3~a! and 3~b! show corrections toP b
RMT for g

5Dk@1 for two representative values ofDk . We find again
that the form of the deviations are very well described by E
~5! and the agreement becomes better for larger values o
diffusion constant. In Fig. 3~c! we summarize our results fo
variousDk values. The extractedkb values are obtained b
the best fit of the data to Eq.~5!. Again we find thatkb
depends linearly on 1/Dk . However, contrary to the 1D-KR
here k1 and k2, are different. Moreover, the best fit wit
kb5AbDk

211Bb yields Ab5155.4460.03 and Ab52

510.8460.04 indicating that the ratioR5A2 /A1 is close to

FIG. 2. ~a! Tails of the distributionPb(t.Dk /L) for the model
~1! for d51 with L51024,Dk.2625 and forb51 (s) and b
52 (L). The solid~dashed! lines are the best fit of Eq.~6! for
b51(2) to our data; ~b! coefficientsCb vs ADk /L. The solid
~dashed! lines are the best fits toCb5AbADk /L1Bb for b
51(2).
05520
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2, a value that could be explained on the basis of ballis
effects@6,9#. Taking the latter into account leads to an ad
tional term in the classical propagatorkb5kdi f f
1(b/2)kball . The first term is the one discussed previous
and is associated with long trajectories that are of diffus
nature while the latter one is associated with short ballis
trajectories that are self-tracing@6#. Thus, when kdi f f
!kball we getR52. The calculation with the RPKR mode
shows, however, that the corresponding ratio isR.1, in

FIG. 3. Corrections to the distribution intensitiesdPb(t) for the
kicked rotator model ~1! for d52. The system size isL
590, (s) b51, (L) b52. The solid ~dashed! lines are the
best fit of Eq.~5! for b51(2) to the numerical data.~a! Dk'34
and ~b! Dk'53; ~c! fit parameterskb vs Dk

21 . The solid~dashed!
lines are the best fits tokb5AbDk

211Bb for b51(2).

FIG. 4. ~a! Tails of the distributionPb51(t.Dk) for the model
~1! for d52 and Dk.35. The system size isL580, (s) b
51, (L) b52. The solid~dashed! lines are the best fit of Eq.~7!
for b51(2) to the numerical data;~b! fitted log-normal coefficients
Cb versus the classical diffusion coefficientDk . The solid~dashed!
lines are the best fits toCb5AbDk1Bb for b51(2).
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agreement with the theoretical prediction for disordered s
tems with a pure diffusion. This indicates that dynamic
correlations can be important in the 2D case.

For the tails of the distributions, the result of the NLS
within a saddle-point approximation@4,6# is

Pb~ t !.exp@2Cb
s~ ln t !2#, Cb

s5
bp2r

2

D

ln~L/ l !
. ~7!

Note that the decay in the tails of Eq.~7! depends onb, as in
the 1D-KR case@see Eq.~6!#. Recently, a DOF method wa
used to calculate the tails ofPb(t) @7#. It was found that the
tails are still given by Eq.~7! but with a log-normal coeffi-
cient C that is independent of the parameterb,

CDOF5p2r
D

ln~L/l!
. ~8!

Figure 4~a! shows a representative case ofPb51(t.Dk).
The tails show a log-normal behavior predicted by Eq.~7!. In
Fig. 4~b! we report the log-normal coefficientsCb extracted
from the best fit to our numerical data, versus the class
diffusion coefficient. A pronounced linear behavior is o
served in agreement with both theories. However, one cle
sees thatC1 differs from C2 in contrast to the DOF predic
tion ~8! and to recent numerical calculations done for the
Anderson model@9#. We point out here that in Ref.@9# the
,’’
i-

v.
,
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authors were not able to go to large enough values of c
ductanceg ~in comparison to our study! where the theory can
really be tested. In contrast, the NLSM predicts a value o
for the ratioR5C2

s/C1
s . We note thatCb

s is only the leading
term in Dk . In order to calculate this ratio, we performed
fit to our data withCb5AbDk1Bb . The resulting ratio was
found to beR5A2 /A151.9760.03, in perfect agreemen
with the NLSM predictions. Finally, in Fig. 4~b! we also
present our results for the RPKR model@using the same data
as the one in Fig. 3~d!#. Again we found that the ratioR
51.9660.03'2. Thus P(t.Dk) depends on TRS and i
described by the NLSM.

In summary, we have performed a detailed numeri
analysis of the statistical properties of the wave function
tensitiesP(t) of the standard KR on a torus and its 2D ge
eralization. Based on these results, we concluded that
distribution P(t) of generic quantumdynamical systems
with diffusive classical limit is affected by the existence
prelocalizedstates. The deviations from RMT are well d
scribed by field theoretical methods developed for disorde
systems. In particular, in a clarifying way we have resolv
the controversy between DOF and NLSM by demonstrat
that the dependence of the tails ofPb(t) on TRS is described
correctly by the latter theoretical approach.

We acknowledge useful discussions with L. Kaplan.
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